A rather detailed account of the nineteenth-century history of the steam engine with governor may help the reader to understand both the circuits and the blindness of the inventors. Some sort of governor was added to the early steam engine, but the engineers ran into difficulties. They came to Clark Maxwell with the complaint that they could not draw a blueprint for an engine with a governor. They had no theoretical base from which to predict how the machine that they had drawn would behave when built and running.
There were several possible sorts of behavior: Some machines went into runaway, exponentially maximizing their speed until they broke or slowing down until they stopped. Others oscillated and seemed unable to settle to any mean Others - still worse - embarked on sequences of behavior in which the amplitude of their oscillation would itself oscillate or would become greater and greater.
Maxwell examined the problem. He wrote out formal equations for relations between the variables at each successive step around the circuit. He found, as the engineers had found, that combining this set of equations would not solve the problem. Finally, he found that the engineers were at fault in not considering time. Every given system embodied relations to time, that is was characterized by time constants determined by the given whole. These constants were not determined by the equations of relationship between successive parts but were emergent properties of the system.
... a subtle change has occurred in the subject of discourse .... It is a difference between talking in a language which a physicist might use to describe how one variable acts upon another and talking in another language about the circuit as a whole which reduces or increases difference. When we say that the system exhibits "steady state" (i.e., that in spite of variation, it retains a median value), we are talking about the circuit as a whole, not about the variations within it. Similarly the question which the engineers brought up to Clark Maxwell was about the circuit as a whole: How can we plan it to achieve a steady state? They expected the answer to be in terms of relations between the individual variables. What was needed and supplied by Maxwell was an answer in terms of time constants of the total circuit. This was the bridge between the two levels of discourse. Gregory Bateson (2002) p. 99-101.
This is a continuation of the previous posting and the discussion of what is unique to a CSE approach relative to more traditional human factors. This post will address the first line in the table below that is repeated from the prior post.
Norbert Wiener's (1948) classic, introducing the Cybernetic Hypothesis, was subtitled "On Control and Communication in the Animal and Machine." The ideas in this book about control systems (machines that were designed to achieve and maintain a goal state) and communication (the idea that information can be quantified) had a significant impact on the framing of research in psychology. It helped shift the focus from behavior to cognition (e.g., Miller, Gallanter, Pribram, 1960).
However, though psychologists began to include feedback in their images of cognitive systems, the early program of research tended to be dominated by the image of an open-loop communication system and the research program tended to focus on identifying stimulus-response associations or transfer functions (e.g., bandwidth) for each component in a series of discrete information processing stages. A major thrust of this research program was to identify the limitations of each subsystem in terms of storage capacity (7 + or - 2 chunk capacity of working memory) and information processing rates (e.g., Hick-Hyman Law, Fitts' Law).
Thus, the Cybernetic Hypothesis inspired psychology to consider "intentions" and other internal aspects associated with thinking, however, it did not free psychology from using the language of the physicist in describing the causal interaction between one variable and another, rather than thinking in terms of properties of the circuit as a whole (i.e., appreciating the emergent properties that arise from the coupling of perception and action). The language of information processing psychology was framed in terms of a dyadic semiotic system for processing symbols as illustrated below.
In contrast, CSE was framed from the start in the language of control theory. This reflected an interest in the role of humans in closing the loop as pilots of aircraft and supervisors of energy production processes. From a control theoretic perspective it was natural to frame the problems of meaning processing as a triadic semiotic system, where the function of cognition was to achieve stable equilibrium with a problem ecology. Note that the triadic semiotic model emerged as a result of the work of functional psychologists (e.g., James & Dewey) and pragmatic philosophers (Peirce), who were most interested in 'mind' as a means for adapting to the pragmatic demands of everyday living. Dewey's (1896) classic paper on the reflex arc examines the implications of Maxwell's insights (described in the opening quote from Bateson) for psychology:
The discussion up to this point may be summarized by saying that the reflex arc idea, as commonly employed, is defective in that it assumes sensory stimulus and motor response as distinct psychical existences, while in reality they are always inside a coordination and have their significance purely from the part played in maintaining or reconstituting the coordination; and (secondly) in assuming that the quale of experience which precedes the 'motor' phase and that which succeeds it are two different states, instead of the last being always the first reconstituted, the motor phase coming in only for the sake of such mediation. The result is that the reflex arc idea leaves us with a disjointed psychology, whether viewed from the standpoint of development in the individual or in the race, or from that of the analysis of the mature consciousness. As to the former, in its failure to see that the arc of which it talks is virtually a circuit, a continual reconstitution, it breaks continuity and leaves us nothing but a series of jerks, the origin of each jerk to be sought outside the process of experience itself, in either an external pressure of 'environment,' or else in an unaccountable spontaneous variation from within the 'soul' or the 'organism.' As to the latter, failing to see unity of activity, no matter how much it may prate of unity, it still leaves us with sensation or peripheral stimulus; idea, or central process (the equivalent of attention); and motor response, or act, as three disconnected existences, having to be somehow adjusted to each other, whether through the intervention of an extra experimental soul, or by mechanical push and pull.
Many cognitive scientists and many human factors engineers continue to speak in the language associated with causal, stimulus-response interactions (i.e., jerks) with out an appreciation for the larger system in which perception and action are coupled. They are still hoping to concatenate these isolated pieces into a more complete picture of cognition. In contrast, CSE starts with a view of the whole - of the coupling of perception and action through an ecology - as a necessary context from which to appreciate variations at more elemental levels.